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Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer’s 

disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this 

high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), 

Sparse Representation-based classification (SRC), Deep Belief Networks (DBN), and Random Forest (RF). These 

widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the 

cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced 

to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art 

algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate 

high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used 

include 190 CN, 305 MCI, and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% 

data for a tenfold cross validation, the proposed algorithm achieved an average F1 score of 95.89%, and an 

accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an 

accuracy of 90.26% for discriminating MCI from CN. Then a true test was implemented on the remaining 20% 

held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97%, and a 

specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for 

discriminating the subtle differences between MCI participants and the CN group.  

Keywords: Gaussian discriminant analysis, mild cognitive impairment, Alzheimer’s disease, machine learning, 

classification algorithms, and computer aided diagnosis.  
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content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.  



C. Fang et al. 
 
2 

1. Introduction 

According to the National Institute on Aging (NIA), 

before memory loss and other cognitive impairments 

can be observed as evidence for Alzheimer's Disease 

(AD), subtle changes to the brain have already started 

for a decade or more.1 Although there still is no known 

cure for the disease, alleviation of specific symptoms is 

possible through treatment for some patients in the early 

or middle stages of AD.2 Thus, accurate diagnosis of its 

prodromal stage, mild cognitive impairment (MCI),  

with a high risk to convert to AD, is essentially 

important as means to facilitate planning for early 

intervention and treatment.3  

Multiple modalities of biomarkers have been found 

to be significantly sensitive in assessing the progression 

of AD. These include structural magnetic resonance 

imaging (MRI),4–10 positron emission tomography 

(PET),9–13 cerebrospinal fluid (CSF),6,13,14 

electroencephalographic (EEG) rhythms,15–26 and 

Magnetoencephalography (MEG).27,28 Using these 

modalities of biomarkers and taking advantage of 

advances made in the development of machine learning 

and deep learning algorithms over the past few years, 

several approaches have been proposed to assist in the 

early diagnosis of MCI.7–9,11–13,29–31 Since no matter 

which modality or modalities of biomarkers are used, 

there will always be multiple variables for predicting the 

progression of the disease, which ultimately can be 

generalized as a high-dimensional classification 

problem.  

Currently, many machine learning and deep learning 

algorithms capable of dealing with high-dimensional 

data have been applied to classification and regression 

analysis in the context of disease diagnosis and 

transition predictions. The more notable of these types 

of algorithms are Random Forest (RF), Support Vector 

Machines (SVM), Sparse Representation-based 

classification (SRC), and Deep Belief Networks 

(DBN).4,7–9,11–13,29–31 Among these state-of-the-art 

algorithms, SVM continues to be one of the most widely 

used for the classification of AD and its prodromal 

stages. But SVM still faces serious challenges, 

especially in the selection of the kernel function 

parameters for nonlinear problems, even under the so-

called kernel trick, which remain essentially difficult to 

overcome in view of the high variance in the main 

features that define the disease. In particular, for 

discriminating MCI from elderly cognitively normal 

control group (CN), the classification performance of 

SVM remains insufficient, ranging between 79% and 

83% in accuracy, and the sensitivity is substantially 

lower than that for AD vs. CN (the easiest two groups to 

separate) and even not significantly better than 

chance.4,8,9,29 Although many of the state-of-the-art 

strategies and techniques continue to advance our 

understanding of AD, there remain many challenges in 

the different experimental stages at determining more 

conclusive evidence for the accurate diagnosis and 

classification of AD, as expressed in studies.30,31  

As a way to overcome such challenges, this study 

develops a machine learning classification algorithm 

based on the Gaussian discriminant analysis (GDA), 

introducing the use of dual decisional spaces, one for 

each hemisphere. Among those modalities, structural 

MRI is currently widely used for analyzing the gradual 

progression of atrophy patterns in key brain regions,32 

therefore, this study makes use of structural MRI as the 

unique input. To the best of our knowledge, this study is 

the first to apply GDA to the diagnosis of CN vs. MCI, 

with the CN vs. AD classification results included here 

only for comparative purposes.  

2. Methodology 

Several software pipelines are used to preprocess the 

raw MRI data as a first step. After the pre-processing 

step, morphometric (shape) data are derived from the 

images, including shape measures of all 25 labeled 

cortical regions. Then a noise detection procedure and a 

feature selection method based on the analysis of 

variance (ANOVA) are deployed to determine the 

statistical significance of each variable in the 

classification outcome. Then, a GDA-based classifier 

applied on the dual decision spaces is proposed for 

solving the boundaries between any two different 

groups of subjects (i.e., CN vs. MCI, CN vs. AD, and 

MCI vs. AD). The general framework of the proposed 

algorithm is illustrated in Fig. 1.  

2.1.  Subjects 

The data used in preparation of this study were obtained 

from the Alzheimer’s disease Neuroimaging Initiative 

(ADNI) database, as part of the ADNI1: Complete 1Yr 

1.5T collection and their assessments at baseline, which 

includes 628 individuals (190 CN, 305 MCI, and 133 

AD).33 The ADNI was launched in 2003 as a public-
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private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI 

has been to test whether serial MRI, PET, other 

biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression 

of MCI and early AD. The primary phenotype is 

diagnostic group and MMSE. All source imaging data 

consisted of 1.5 Tesla T1-weighted MRI volumes in the 

NIfTI (.nii.gz) format. Summary statistics and patient 

counts are listed in Table 1. 

2.2.  MRI data pre-processing 

Using three neuroimaging software pipelines: 

FreeSurfer,34 Advanced Normalization Tools (ANTs),35 

and Mindboggle,36 the original MRI data were 

preprocessed following the instruction provided by 

Alzheimer's Disease Big Data DREAM Challenge #1.37 

Tables of morphometric data were derived from the 

images using the following seven shape measures for all 

25 FreeSurfer labeled cortical regions for both left and 

right hemispheres of the brain: 1) surface area; 2) travel 

depth; 3) geodesic depth; 4) mean curvature; 5) 

convexity; 6) thickness; and 7) volume. FreeSurfer 

pipeline (version 5.3) was applied to all T1-weighted 

images to generate labeled cortical surfaces, and labeled 

cortical and non-cortical volumes. Templates and 

atlases used by ANTs and Mindboggle can be found on 

the Mindboggle website.38  

2.3.  Noise detection 

The aforementioned preprocessed MRI data of the 25 

labeled cortical regions were used to generate two 175-

variable ( 257 ) vector discriminators, for each subject 

(i.e., one 175-variable vector per hemisphere). This 

study reveals that separating the variables for each 

hemisphere of the brain yields a better classification 

performance than processing all features together, with 

details in support of this assertion provided in the 

Results Section. As for the few subjects whose vector 

discriminator involved atypical variables, for example, 

some regions having measurements of some areas to be 

zero, these subjects were removed from further 

investigation. 

2.4.  Feature selection 

By the final stage of AD, brain tissue has atrophied 

significantly, so all shape measures mentioned above 

could have changed as well. Some of the subtle changes 

initially appear to take place in some specific areas of 

the brain, so determination of the key changed regions 

of interest (ROIs) can help to discriminate more 

specifically MCI from CN.  

  

 Original MRI data 

 

MRI data pre-processing 

i.e., derive tables of 

morphometric (shape) data 

of all labeled cortical regions 

Sort all features by p-value 
based on the ANOVA 

Choose features by the 

incremental error analysis 

Train the proposed GDA-based classifier and 

derive boundaries in dual decision spaces 

 

 

Test the obtained dual decision 

spaces using held-out data 
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Fig. 1.  General framework of the GDA-based dual high-

dimensional decision spaces. 

Table 1.  Summary statistics of subjects. 

Group 
Patient 

Numbers 
Mean  SD Male  

% 

Female 

% MMSE  Age Years of Edu. 

CN 190 29.1  1.0 75.9   5.1 16.1  2.7 51.6 48.4 

MCI 305 27.0  1.8 74.9  7.1 15.7  3.0 64.9 35.1 

AD 133 23.5  1.9 74.8  7.6 14.7  3.1 51.1 48.9 

Total 628 26.9  2.6 75.2  6.7 15.6  3.0 58.0 42.0 

CN: cognitively normal control, MCI: mild cognitive 

impairment, AD: Alzheimer’s disease, MMSE: Mini–

Mental State Examination, SD: standard deviation 
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2.4.1.  ANOVA ranking 

An ANOVA was carried out on each of the 175 

variables of the two vectors between any two groups 

(i.e., CN vs. MCI, CN vs. AD, and MCI vs. AD) to 

determine the significance of each variable in terms of 

classification outcome, and all variables were thereafter 

ranked according to their p-values. It should be noted 

that in the feature selection procedure, the Shapiro-Wilk 

test was employed for testing the normality of the shape 

measures and the average p-value is 0.28, which 

indicates that the data are from a normally distributed 

population.39 Furthermore, equal weights are assigned to 

each of the shape measures so as to eliminate any bias.  

2.4.2.  Incremental error analysis 

In order to maintain only few key variables and still 

ensure good classification performance, an incremental 

error analysis was performed to determine how many of 

the top-ranked variables ought to be included in the 

classifier.3 In the initial phase, the proposed GDA-based 

classifier only uses the first-ranked variable. The error 

analysis was employed whereby introducing the next 

top-ranked variable in the classifier at each subsequent 

phase, and recording the corresponding classification 

statistics (i.e., F1 score, accuracy, sensitivity, 

specificity, positive predictive value (PPV), and 

negative predictive value (NPV)), which then would be 

compared with the previous phase. When the 

performance in terms of its classification statistics can 

no longer be improved, the optimal set of variables 

would have been obtained.  

2.5.  GDA-based classifier 

Since there may be as many as 175 variables to be taken 

into consideration, the classifier must be able to resolve 

this high-dimensional classification problem. For this 

reason, and by using GDA, an important supervised 

machine learning algorithm for such classification 

problems, the proposed classifier is able to solve the 

boundaries between any two groups (i.e., CN vs. MCI, 

CN vs. AD, and MCI vs. AD).  The proposed 

classification problem can then be formalized by having 

the machine learn to distinguish among CN ( 0=y ), 

MCI ( 1=y ), and AD ( 2=y ), based on the selected 

features 
nx R


. Then, given a training set, the 

proposed algorithm can model )|( yxp


, the condition 

distribution of the n-dimensional vector x


 given 

}2,1,0{y , assumed to be distributed according to a 

multivariate Gaussian distribution (or multivariate 

normal distribution), whose density function is given by 

(1) as below:  

 
)()(

2

1 1

||)2(

1
),;(







 −−− −



=
xx

n

T

exp  (1) 

where n
R


 is the mean vector, nn R  is the 

covariance matrix, the same as the one used in other 

regression analysis methods (e.g., the principal 

component analysis), and ||   and 1−  denote the 

determinant and inverse matrix of  , respectively. Note 

that n  is the dimension of vector x


, i.e., the number of 

features included in the classifier.  After modeling 

)|( yxp


, the proposed algorithm uses Bayes rule to 

derive subsequent distribution on y  given x


 as 

follows:  

 
)(

)()|(
)|(

xp

ypyxp
xyp 



=  (2) 

Here, )( yp  is the class prior distribution, which could 

not be determined when given a certain subject, so it is 

assumed to be absolutely random (i.e., for all ji  , 

)()( jypiyp === ). Furthermore, in order to make a 

prediction, it is not necessary to calculate the 

denominator )(xp


, since   

 
)(

)()|(
maxarg)|(maxarg

xp

ypyxp
xyp

yy




=   

 )()|(maxarg ypyxp
y


=  (3) 

Therefore, for the purpose of classification, it only 

needs  

 )|(maxarg)|(maxarg yxpxyp
yy


=  (4) 

The classifier was applied to each hemisphere of the 

brain (using the two 175-variable vectors), and if either 

one of the two sides had been classified to be positive, 

the corresponding subject should be positive as well.  

The performance of the proposed classifier was 

measured using the F1 score, accuracy, sensitivity, 

specificity, PPV, and NPV based on a tenfold cross 

validation process. For selecting the optimal set of 

variables, 80% of the noise-free detected subjects’ data 

was used as the training set in a tenfold cross validation 

process, which were randomly assigned to ten subsets 
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0d , 1d , …, 9d , so that all subsets were of equal size. 

Then one of each of the ten sets was retained as the 

validation dataset, while the remaining nine datasets 

were used as training data; thus, every data point was 

used for both training and validation on each fold. Once 

the optimal set of variables was generated, the 

classification performance was evaluated by using the 

remaining 20% of the noise-free detected subject data 

points as the held-out test set.  

As demonstrated in Fig. 2, data of the left and right 

hemispheres of the brain were processed separately, 

which means, for the final classification, each 

hemisphere had its own decision space, and as long as 

one decision space produces the positive result (i.e., 

MCI in CN vs. MCI, AD in CN vs. AD, and AD in MCI 

vs. AD), the tested subject is classified as such. This 

innovative process resulted in a significant improvement 

of the classification performance as demonstrated in the 

Results section, especially for the most challenging 

classification of CN vs. MCI.  

3. Results 

In this section, the experimental results of the feature 

selection process reveal the significance of different 

ROIs in patients for the three classification types: 1) CN 

vs. MCI; 2) CN vs. AD; and 3) MCI vs. AD. Evolution 

in the statistics during the incremental error analysis and 

 

Fig. 2.  Flowchart of the GDA-based dual decision space 

classification. 

Table 2.  Number of significant variables 

selected for each comparison. 

Groups CN vs. MCI CN vs. AD MCI vs. AD 

Side of brain Number of significant variables (p-value < 0.01) 

Left 50 79 51 

Right 44 68 41 

CN: cognitively normal control, MCI: mild cognitive 

impairment, AD: Alzheimer’s disease 

Table 3.  Top-10 significant variables for each comparison. 

Groups CN vs. MCI CN vs. AD MCI vs. AD 

Side of 
brain 

Rank Measurements p-value Measurements p-value Measurements p-value 

Left 

1 Thickness of entorhinal < 10-17 Thickness of entorhinal < 10-36 Thickness of inferior parietal < 10-8 

2 Curvature of entorhinal < 10-13 Curvature of entorhinal < 10-26 Thickness of entorhinal < 10-7 

3 Thickness of middle temporal < 10-12 Thickness of middle temporal < 10-24 Thickness of middle temporal < 10-6 

4 Thickness of inferior temporal < 10-10 Thickness of inferior temporal < 10-22 Thickness of inferior temporal < 10-6 

5 Curvature of middle temporal < 10-9 Curvature of middle temporal < 10-21 Volume of inferior parietal < 10-6 

6 Thickness of fusiform < 10-8 Thickness of inferior parietal < 10-18 Curvature of middle temporal < 10-6 

7 Curvature of insula < 10-8 Curvature of inferior temporal < 10-16 Curvature of inferior parietal < 10-6 

8 Curvature of parahippocampal < 10-8 Thickness of fusiform < 10-16 Volume of inferior temporal < 10-6 

9 Curvature of inferior temporal < 10-8 Curvature of parahippocampal < 10-15 Curvature of entorhinal < 10-5 

10 Thickness of superior temporal < 10-6 Curvature of inferior parietal < 10-14 Volume of middle temporal < 10-5 

Right 

1 Thickness of entorhinal < 10-13 Thickness of entorhinal < 10-31 Curvature of middle temporal < 10-8 

2 Thickness of middle temporal < 10-10 Thickness of middle temporal < 10-25 Thickness of entorhinal < 10-8 

3 Thickness of fusiform < 10-10 Curvature of middle temporal < 10-22 Thickness of middle temporal < 10-7 

4 Curvature of middle temporal < 10-8 Curvature of entorhinal < 10-21 Volume of inferior parietal < 10-6 

5 Curvature of superior temporal < 10-8 Thickness of inferior parietal < 10-18 Curvature of inferior temporal < 10-6 

6 Curvature of entorhinal < 10-8 Curvature of inferior temporal < 10-18 Curvature of entorhinal < 10-6 

7 Curvature of fusiform < 10-8 Thickness of inferior temporal < 10-17 Thickness of inferior parietal < 10-6 

8 Thickness of superior frontal < 10-7 Thickness of fusiform < 10-17 Volume of middle temporal < 10-5 

9 Thickness of inferior temporal < 10-7 Curvature of inferior parietal < 10-15 Volume of inferior temporal < 10-5 

10 Curvature of superior frontal < 10-7 Curvature of fusiform < 10-15 Thickness of inferior temporal < 10-5 

CN: cognitively normal control, MCI: mild cognitive impairment, AD: Alzheimer’s disease 
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the classification performance of the GDA-based 

algorithm using the proposed dual decisional spaces are 

provided.  

3.1.  Ranking of the variables 

After the noise detection process was applied, 9 subjects 

were removed because of the noisy data, which included 

measurements with zero values, so the final data used in 

the classification experiment included 619 individuals, 

among them, 187 CN, 301 MCI, and 131 AD. As 

mentioned earlier, ANOVA was performed for CN vs. 

MCI, CN vs. AD, and MCI vs. AD using two 175-

variable vectors corresponding to the left and right 

hemispheres of the brain. For each group, all variables 

found at 0.01 level of significance (LOS) out of all 175 

variables for each side of the brain (i.e., those variables 

with p-values less than 0.01) were used for the 

classification as shown in Table 2.  

The top 10 ranked variables and their corresponding 

measurements are given in Table 3, where it can be 

observed that the entorhinal cortex is the most 

significant (first-ranked) cortical region for 

discriminating either MCI or AD from CN. This 

observation is consistent with recent studies indicating 

that indeed the entorhinal cortex is the first area to be 

implicated in AD,40–42 providing credence to the validity 

of our feature selection method. Moreover, the 

entorhinal cortex has been proven to be a major source 

of projections to the hippocampus,43 which plays an 

important role in converting short-term memory (also 

known as working memory) to long-term memory. 

Interestingly, for discriminating MCI from AD, the 

entorhinal cortex is relegated to the second top-ranked 

region.  

Although the hippocampus area does not appear to 

be of higher significance than the entorhinal cortex in 

the feature selection process, it could still serve as an 

explanation for the symptom of AD in that short-term 

memory loss occurs earlier than long-term memory loss. 

Since, at the very beginning, direct connections to the 

hippocampus seem to have been affected. The second 

top-ranked cortical region, the middle temporal, is also 

 

Fig. 3.  Relative location of hippocampus and the top-three-ranked cortical regions (visualized with the BrainNet Viewer45) 
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critical for long-term memory, to which the disrupted 

hippocampal connectivity has been found in the early 

stages of AD.44 Moreover, in the human brain, all top 

three-ranked cortical regions, including the entorhinal, 

the middle temporal, and the inferior temporal are very 

close to the hippocampus as shown in Fig. 3. From 

Table 3, it also can be observed that for discriminating 

between MCI and AD, the significant variables are now 

much different to others. Hence, for the tenfold cross 

validation and the incremental error analysis, all three 

classifications were trained and validated separately in 

order to achieve the best performance.  

3.2. Optimal sets of variables 

To generate the optimal set of variables, in the 

tenfold cross validation, the aforementioned 80% of the 

noise-free detected data points included 500 individuals 

(150 CN, 240 MCI, and 110 AD), where all numbers 

were rounded to the nearest number divisible by 10 for 

the tenfold cross validation of the noise-free detected 

subjects included in this study (i.e., 619 = 187 CN + 301 

MCI + 131 AD). 

The purpose of applying the incremental error 

analysis was to obtain the best classification 

performance with the optimal number of variables (i.e., 

the number of dimensions in the decisional spaces). For 

each hemisphere, some classification statistics are 

illustrated in Fig. 4, where the horizontal axis indicates 

the number of significant variables included in each 

iteration.  

 
(a) 

 
(b) 

 
(c)  

Fig. 4.  Incremental error analysis performance of classification statistics (a) CN vs. MCI, (b) CN vs. AD, and (c) MCI vs. AD. 
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In the tenfold cross validation and in the subsequent 

true test, four important parameters were computed, 

including the number of True Positives (TP) (i.e., the 

correctly classified positive subjects), the number of 

True Negatives (TN) (i.e., the correctly classified 

negative subjects), the number of False Positive (FP) 

(i.e., the negative subjects incorrectly classified as 

positive), and the number of False Negative (FN) (i.e., 

the positive subjects incorrectly classified as negative). 

For evaluating the classification performance, the 

following commonly used measures are computed for 

determining accuracy (5), sensitivity (6), specificity (7), 

positive predictive value - PPV (8), and negative 

predictive value - NPV (9):  

 
FNTNFPTP

TNTP
Accuracy

+++

+
=  (5) 

 
FNTP

TP
ySensitivit

+
=  (6) 

 
FPTN

TN
ySpecificit

+
=  (7) 

 
FPTP

TP
PPV

+
=  (8) 

 
FNTN

TN
NPV

+
=  (9) 

But due to the effect of imbalanced data, and as a 

clinical application, the classification performance was 

not only measured by the accuracy, which actually 

relies more on the sensitivity or recall and the PPV or 

precision, but also by using the F1 score, as expressed 

below, in order to select the optimal sets of variables,  

 
FNFPTP

TP

PPVySensitivit

PPVySensitivit
F

++
=

+


=

2

22
1 (10) 

As the harmonic mean of sensitivity and PPV, the F1 

score or balanced F-score is the widely used measure of 

performance in statistical analysis of binary 

classification. For the incremental error analysis (IEA), 

the set with the highest F1 score was selected, when 

several sets had the same F1 score, the one with the 

highest accuracy was chosen, then if still multiple 

choices were found, the one having the minimum size 

was finally selected.  

As demonstrated in Fig. 4(a), for either one of the 

two hemispheres of the brain, the classification 

performance for CN vs. MCI yielded better than the 

average results obtained from other studies reported in 

Ref. 4, where the sensitivity is 78.75% and 77.50% for 

each decision space (i.e., each hemisphere), 

respectively. After combining the results of the two 

decisional spaces together and implementing the 

incremental error analysis again, the evolution of the F1 

score is as illustrated in Fig. 5.  

It can be observed that the final optimal sets are 

different from the ones obtained for each hemisphere 

before combining the two decision spaces together. For 

all comparisons, the performance was improved 

significantly as shown in Table 4. Moreover, for the 

most difficult two groups to delineate, CN vs. MCI, 

significant enhancements in classification statistics were 

achieved, including an increase in F1 score average 

from 73.82% to 92.08% and increments of 24.37% for 

accuracy, 13.96% for sensitivity, 41.00% for specificity, 

22.11% for PPV, and 30.37% for NPV, respectively. 

Comparatively to the more recently reported cross 

validation performances of some of the state-of-the-art-

 
(a)          (b)     (c) 

Fig. 5.  Incremental error analysis performance of F1 score (a) CN vs. MCI, (b) CN vs. AD, and (c) MCI vs. AD.  
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approaches,7–9,12,13,29,46 the proposed study achieves 

remarkable improvements in performance, especially in 

delineating MCI from CN, even when MRI is the only 

modality used for this study. As shown in Table 5, 

except for the specificity of the CN vs. MCI 

classification and the sensitivity of the MCI vs. AD 

classification, the proposed method yielded the best 

cross validation performance in a comparative 

assessment to all other methods.  

3.3.  Classification performance 

In order to obtain a reliable measure of the classification 

performance, the remaining 20% of the noise-free 

detected data points were used as the held-out test data 

(37 CN, 61 MCI, and 21 AD) using the obtained 

optimal sets of variables. The results are presented in 

Table 6. Although the classification performance was 

not as good as that obtained in the tenfold cross 

validation, the results are still better than state-of-the-

art-algorithm reviewed in Ref. 4 and the recently 

proposed state-of-the-art approach in Ref. 12, as shown 

in Table 7. Since not all studies implemented the held-

out data true test, only the results from Ref. 4 and Ref. 

12 were considered for comparison to our proposed 

method, which also used ADNI data. For discriminating 

AD from CN, the proposed GDA-based algorithm 

achieved an accuracy of 93.10%, sensitivity of 90.48%, 

specificity of 94.59%, PPV of 90.48%, and NPV of 

94.59%; these results for these two groups were 

expected. But more importantly, an accuracy of 80.61%, 

sensitivity of 81.97%, specificity of 78.38%, PPV of 

86.21%, and NPV of 72.50% were obtained for 

discriminating MCI from CN; results that are 

considered as the best classification performance 

obtained so far using the GDA method. 

4. Discussion 

The merits of the proposed GDA-based dual decision 

space algorithm are not only reflected through the good 

classification performance it achieved, but also in the 

strategic way it looked at the two hemispheres of the 

brain separately. The classification was performed using 

Table 4.  Summary of tenfold cross validation performance improved after combining the dual decision spaces.  

Groups CN vs. MCI CN vs. AD MCI vs. AD 

Decision Space Left Right Comb. Left Right Comb. Left Right Comb. 

F1 % 73.83 73.81 92.08 82.03 83.18 95.89 56.59 55.00 81.41 

ACC % 65.64 66.15 90.26 85.00 86.15 96.54 68.00 69.14 89.43 

SEN % 78.75 77.50 92.08 80.91 80.91 95.45 66.36 60.00 73.64 

SPE % 44.67 48.00 87.33 88.00 90.00 97.33 68.75 73.33 96.67 

PPV % 69.49 70.45 92.08 83.18 85.58 96.33 49.32 50.77 91.01 

NPV % 56.78 57.14 87.33 86.27 86.54 96.69 81.68 80.00 88.89 

Number of the 
optimal variables 

36 34 
L: 5 

R: 44 
6 5 

L: 10 
R: 44 

2 2 
L: 48 
R: 4 

 

Table 5.  Comparison of cross validation performance with some recent studies.  

Groups 
Modalities Classifier 

Source of Data 

(CN+MCI+AD) 

CN vs. MCI CN vs. AD MCI vs. AD 

Reference ACC % SEN % SPE % ACC % SEN % SPE % ACC % SEN % SPE % 

M. Liu et al.,7 

2012 
MRI SRC 

ADNI  

(229 + 225 + 198) 
87.85 85.26 90.40 90.80 86.32 94.76 - - - 

L. Khedher et 
al.,8 2015 

MRI SVM 
ADNI  

(229 + 401 + 188) 
81.89 82.61 81.62 88.49 91.27 85.11 85.41 87.03 83.78 

T. Ye et al.,9 

2016 
MRI + PET SVM 

ADNI  

(52 + 99 + 51) 
82.13 87.68 71.54 95.92 94.71 97.12 - - - 

T. Tong et al.,13 
2017 

MRI + PET + 
CSF + Genetic 

RF 
ADNI 

(35+75+37) 
79.50 85.10 67.10 91.80 88.90 94.70    

L. Khedher et 

al.,29 2017 
MRI SVM 

ADNI 

(-) 
79.00 82.00 76.00 89.00 92.00 86.00 85.00 85.00 86.00 

A. Ortiz et al.,46 
2017 

MRI DBN 
ADNI  

(-) 
83.00 - - 90.00 - - 84.00 - - 

Proposed Study MRI GDA 
ADNI 

(190 + 305 + 133) 
90.26 92.08 87.33 96.54 95.45 97.33 89.64 84.29 90.67 

CN: cognitively normal control, MCI: mild cognitive impairment, AD: Alzheimer’s disease, Comb.: combining left and right, 

ACC: accuracy, SEN: sensitivity, SPE: specificity, PPV: positive predictive value, NPV: negative predictive value 
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two decision spaces (i.e., the left and right hemispheres 

of the brain), respectively, then as long as one of them 

produces a positive result (MCI or AD), the given 

subject is classified as a positive one. Since the 

boundaries have been obtained, it would be very 

effective to classify a subject. A normality test was 

conducted, which proved that the original data were 

normally distributed; therefore, GDA was the method of 

choice as a more efficient way to address the anticipated 

nonlinear boundaries between the different groups (CN, 

MCI and AD). Empirical evaluations demonstrated that 

the proposed GDA-based algorithm, as illustrated in 

Fig. 6, proved to be easier for implementation and 

provided better results than logistic regression and SVM 

with Gaussian or RBF kernel. And taking advantage of 

the covariance matrix, the correlation of different 

variables is taken into account by the proposed GDA-

based classifier, which is deemed essentially important 

and often ignored in some probabilistic classification 

algorithms like Naive Bayes.  

It ought to be noted that in this study, the 

classification performance has been improved 

significantly by using only structural MRI data. 

Evidently, there are many other sensitive biomarkers 

including PET, CSF, EEG, among others, and some 

cognitive markers like failure to recover from proactive 

interference (frPSI),47 that could be integrated in the 

proposed analysis that made use of only MRI 

measurements. In a multimodal neuroimaging approach, 

diagnosis, prediction and classification of AD are all 

processes that would be greatly enhanced, with a focus 

placed on the early detection of the MCI stage and 

hence timely planning of therapeutic interventions and 

treatment.31  

So far, most of the current investigations assumed 

only binary or two-way classification, where validation 

experiments were based on two-group comparisons, i.e., 

CN vs. MCI, CN vs. AD, and MCI vs. AD. Such binary 

classifications limit the clinical diagnosis for a given 

patient, which could belong in any of the three groups. 

In those three-way classification studies, the 

performance is still not insufficient, which can achieve 

the overall accuracy around 60%.13 The proposed 

algorithm is not able to implement three-way 

classification yet, therefore, more efforts and further 

investigations need to be concentrated on the 

multimodal multi-class classification of different stages 

of AD for our future work.  

5. Conclusion 

This study proposed GDA-based dual high-dimensional 

decision spaces for the diagnosis of MCI in AD using 

structural MRI data as the unique input. The feature 

selection in this study demonstrates that the entorhinal 

cortex is the most significant cortical region for 

distinguishing CN from MCI and more evidently for 

AD, which is consistent with recent studies that 

concluded that the entorhinal cortex, deep in the brain, 

is the first area to be implicated in AD. As a clinical 

application, when selecting the optimal sets of variables, 

the classification performance is measured by the F1 

score instead of the accuracy in consideration of the 

imbalanced data. Another major contribution of this 

study is that by performing the feature selection and 

Table 6.  Summary of the proposed GDA-based dual high-dimensional decision spaces classification performance.  

Groups CN vs. MCI CN vs. AD MCI vs. AD 

Decision Space Left Right Comb. Left Right Comb. Left Right Comb. 

ACC % 55.10 52.04 80.61 75.86 70.69 93.10 65.85 67.07 85.37 

SEN % 73.77 65.57 81.97 71.43 66.67 90.48 42.86 38.10 52.38 

SPE % 24.32 29.73 78.38 78.38 72.94 94.59 73.77 77.05 96.72 

PPV % 61.64 60.61 86.21 65.22 58.33 90.48 36.00 36.36 84.62 

NPV % 36.00 34.38 72.50 82.86 79.41 94.59 78.95 78.33 85.51 

 

Table 7. Comparison of classification performance with other studies using true test with held-out data.   

Groups 
Modalities Classifier 

CN vs. MCI CN vs. AD 

Reference ACC % SEN % SPE % PPV % NPV % ACC % SEN % SPE % PPV % NPV % 

R. Cuingnet et al.,4 2011 MRI SVM - 73.00 74.00 56.00 86.00 - 82.00 89.00 86.00 86.00 

H. Aidos et al.,12 2017 PET SVM 61.90 54.70 69.20 - - 84.40 76.90 91.90 - - 

Proposed Study MRI GDA 80.61 81.97 78.38 86.21 72.50 93.10 90.48 94.59 90.48 94.59 

CN: cognitively normal control, MCI: mild cognitive impairment, AD: Alzheimer’s disease, Comb.: combining left and right, 

ACC: accuracy, SEN: sensitivity, SPE: specificity, PPV: positive predictive value, NPV: negative predictive value 
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training process to both left and right hemispheres of the 

brain separately, then generating dual decision spaces 

instead of typically using only one decision space, the 

classification performance is shown to improve 

significantly.  

Availability of data and material 

Data are available to researchers by applying to the 

respective organization, ADNI. Application is required 

to protect participant confidentiality. The ADNI data are 

available at (http://adni.loni.usc.edu/).  

Acknowledgements 

Data collection and sharing for this project was funded 

by the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) (National Institutes of Health Grant U01 

AG024904) and DOD ADNI (Department of Defense 

award number W81XWH-12-2-0012). ADNI is funded 

by the National Institute on Aging, the National Institute 

of Biomedical Imaging and Bioengineering, and 

through generous contributions from the following: 

AbbVie, Alzheimer’s Association; Alzheimer’s Drug 

Discovery Foundation; Araclon Biotech; BioClinica, 

Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, 

Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; 

Eli Lilly and Company; EuroImmun; F. Hoffmann-La 

Roche Ltd and its affiliated company Genentech, Inc.; 

Fujirebio; GE Healthcare; IXICO Ltd.; Janssen 

Alzheimer Immunotherapy Research & Development, 

LLC.; Johnson & Johnson Pharmaceutical Research & 

Development LLC.; Lumosity; Lundbeck; Merck & 

Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx 

Research; Neurotrack Technologies; Novartis 

Pharmaceuticals Corporation; Pfizer Inc.; Piramal 

Imaging; Servier; Takeda Pharmaceutical Company; 

and Transition Therapeutics. The Canadian Institutes of 

Health Research is providing funds to support ADNI 

clinical sites in Canada. Private sector contributions are 

facilitated by the Foundation for the National Institutes 

of Health (www.fnih.org). The grantee organization is 

the Northern California Institute for Research and 

Education, and the study is coordinated by the 

Alzheimer’s Therapeutic Research Institute at the 

University of Southern California. ADNI data are 

 
(a) 

 
(b) 

Fig. 6.  The GDA-based dual high-dimensional decision spaces for CN, MCI, and AD with top-two ranked features (a) Multivariate 

Gaussian distribution, and (b) Classification boundaries of GDA-based dual decision spaces.  



C. Fang et al. 
 
12 

disseminated by the Laboratory for Neuro Imaging at 

the University of Southern California.  

We acknowledge the critical support provided by 

the National Science Foundation under grants: CNS-

1532061, CNS-1551221, CNS-1338922, and CNS-

1429345. The generous support of the Ware Foundation 

is greatly appreciated.  

We appreciate the support provided by the Florida-

based Alzheimer’s Disease Research Center 

(1P50AG047266-01A1), R01 AG047649-01A1, the 

Florida Department of Health, Ed and Ethel Moore 

Alzheimer’s Disease Research Program, and the Wien 

Center for Alzheimer's Disease & Memory Disorders, 

Mount Sinai Medical Center, Miami, FL.  

 

References 

1. NIA, Basics of Alzheimer's Disease and Dementia. 

Available:https://www.nia.nih.gov/alzheimers/topics/alz

meimers-basics. Accessed: 24-Jan-2017.  

2. NIA, How Is Alzheimer's Disease Treated? Available: 

https://www.nia.nih.gov/health/how-alzheimers-disease-

treated. Accessed: 8-Dec-2017.  

3. Q. Zhou, M. Goryawala, M. Cabrerizo, J. Wang, W. 

Barker, D. A. Loewenstein, R. Duara, and M. Adjouadi, 

An Optimal Decisional Space for the Classification of 

Alzheimer's Disease and Mild Cognitive Impairment, 

IEEE Trans. Biomed. Eng. 61(8) (2014) 2245–2253.  

4. R. C. A. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, 

S. Lehéricy, M.-O. Habert, M. Chupin, H. Benali, and O. 

Colliot, Automatic classification of patients with 

Alzheimers disease from structural MRI: A comparison 

of ten methods using the ADNI database, Neuroimage 

56(2) (2011) 766–781.  

5. F. J. Martinez-Murcia, J. M. Górriz, J. Ramírez, and A. 

Ortiz, A Structural Parametrization of the Brain Using 

Hidden Markov Models-Based Paths in Alzheimer’s 

Disease, Int. J. Neural Syst. 26(7) (2016) 1650024.  

6. D. Zhang, Y. Wang, L. Zhou, H. Yuan, D. Shen, and 

Alzheimer’s Disease Neuroimaging Initiative, 

Multimodal classification of Alzheimer’s disease and 

mild cognitive impairment, Neuroimage 55(3) (2011) 

856–867.  

7. M. Liu, D. Zhang, D. Shen, and Alzheimer’s Disease 

Neuroimaging Initiative, Ensemble sparse classification 

of Alzheimer's disease, Neuroimage 60(2) (2012) 1106–

1016.  

8. L. Khedher, J. Ramírez, J. M. Górriz, A. Brahim, F. 

Segovia, and Alzheimer’s Disease Neuroimaging 

Initiative, Early diagnosis of Alzheimer’s disease based 

on partial least squares, principal component analysis and 

support vector machine using segmented MRI images, 

Neurocomputing 151(1) (2015) 139–150. 

9. T. Ye, C. Zu, B. Jie, D. Shen, D. Zhang, and Alzheimer’s 

Disease Neuroimaging Initiative, Discriminative multi-

task feature selection for multi-modality classification of 

Alzheimer's disease, Brain Imaging Behav.10(3) (2016) 

739–749.  

10. R. Romero-Garcia, M. Atienza, and J. L. Cantero, 

Different scales of cortical organization are selectively 

targeted during the progression to Alzheimer's disease, 

Int. J. Neural Syst. 26(2) (2016), 1650003.  

11. I. Illán, J. Górriz, J. Ramírez, D. Salas-Gonzalez, M. 

López, F. Segovia, R. Chaves, M. Gómez-Rio, and C. 

Puntonet, 18F-FDG PET imaging analysis for computer 

aided Alzheimer’s diagnosis, Info. Sci. 181(4) (2011) 

903–916. 

12. H. Aidos, and A. Fred, Discrimination of Alzheimer's 

Disease using longitudinal information, Data Mining and 

Knowledge Discovery, 31(4) (2017) 1006–1030.  

13. T. Tong, K. Gray, Q. Gao, L. Chen, and D. Rueckert, 

Multi-modal classification of Alzheimers disease using 

nonlinear graph fusion, Pattern Recognition, 63 (2017) 

171–181.  

14. P. Scheltens, CSF biomarkers in relation to neuroimaging 

in mild cognitive impairment and Alzheimers disease, 

Alzheimers Dement. 6(4) (2010).  

15. F. C. Morabito, M. Campolo, D. Labate, G. Morabito, L. 

Bonanno, A. Bramanti, S. D. Salvo, A. Marra, and P. 

Bramanti, A longitudinal EEG study of Alzheimer’s 

disease progression based on a complex network 

approach, Int. J. Neural Syst. 25(2) (2015) 1550005.  

16. N. Mammone, L. Bonanno, S. D. Salvo, S. Marino, P. 

Bramanti, A. Bramanti, and F. C. Morabito, Permutation 

disalignment index as an indirect, EEG-based, measure of 

brain connectivity in MCI and AD patients, Int. J. Neural 

Syst. 27(5) (2017) 1750020.  

17. N. Mammone, S. D. Salvo, C. Ieracitano, S. Marino, A. 

Marra, F. Corallo, and F. C. Morabito, A permutation 

disalignment index-based complex network approach to 

evaluate longitudinal changes in brain-electrical 

connectivity, Entropy 19(10) 548.  

18. N. Houmani, G. Dreyfus, and F. B. Vialatte, Epoch-based 

entropy for early screening of Alzheimer’s disease, Int. J. 

Neural Syst. 25(8) (2015) 1550032.  

19. J. Dauwels, F. Vialatte, T. Musha, and A. Cichocki, A 

comparative study of synchrony measures for the early 

diagnosis of Alzheimers disease based on EEG, 

Neuroimage 49(1) (2010) 668–693.  

20. H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, 

Alzheimers Disease: Models of Computation and 

Analysis of EEGs, Clinical EEG and Neurosci. 36(3) 

(2005) 131–140.  

21. H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, A Spatio-

temporal Wavelet-Chaos Methodology for EEG-based 

Diagnosis of Alzheimer’s Disease, Neurosci. Letters 

444(2) (2008) 190-194.  



 GDA for optimal delineation of MCI in AD 
 

13 

22. M. Ahmadlou, H. Adeli, and A. Adeli, New diagnostic 

EEG markers of the Alzheimer’s disease using visibility 

graph, J. Neural Transmission 117(9) (2010) 1099–1109.  

23. M. Ahmadlou, H. Adeli, and A. Adeli, Fractality and a 

Wavelet-chaos-Methodology for EEG-based Diagnosis 

of Alzheimer Disease, Alzheimer Disease & Associated 

Disorders 25(1) (2011) 85–92. 

24. Z. Sankari and H. Adeli, Probabilistic neural networks for 

diagnosis of Alzheimers disease using conventional and 

wavelet coherence, J. Neurosci. Methods 197(1) (2011) 

165–170.  

25. Z. Sankari, H. Adeli, and A. Adeli, Intrahemispheric, 

interhemispheric, and distal EEG coherence in 

Alzheimer’s disease, Clinical Neurophysiol. 122(5) 

(2011) 897–906.  

26. M. Ahmadlou, A. Adeli, R. Bajo, and H. Adeli, 

Complexity of functional connectivity networks in mild 

cognitive impairment subjects during a working memory 

task, Clinical Neurophysiol. 125(4) (2014) 694–702.  

27. J. P. Amezquita-Sanchez, A. Adeli, and H. Adeli, A new 

methodology for automated diagnosis of mild cognitive 

impairment (MCI) using magnetoencephalography 

(MEG), Behavioural Brain Res. 305 (2016) 174–180.  

28. D. López-Sanz, P. Garcés, B. Álvarez, M.L. Delgado, R. 

López, and F. Maestú, Network disruption in the 

preclinical stages of Alzheimer´s Disease: from 

Subjective Cognitive Decline to Mild Cognitive 

Impairment, Int. J. Neural Sys. 27(8) (2017), 1750041.  

29. L. Khedher, I. A. Illán, J. M. Górriz, J. Ramírez, A. 

Brahim, and A. Meyer-Baese, Independent Component 

Analysis-Support Vector Machine-Based Computer-

Aided Diagnosis System for Alzheimer’s with Visual 

Support, Int. J. Neural Syst. 27(3) (2017) 1650050.  

30. H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, 

Alzheimers disease and models of computation: Imaging, 

classification, and neural models, J. Alzheimers Disease 

7(3) (2005) 187–199. 

31. G. Mirzaei, A. Adeli, and H. Adeli, Imaging and machine 

learning techniques for diagnosis of Alzheimer’s disease, 

Reviews in the Neurosci. 27(8) (2016) 857–870.  

32. C. Li, C. Fang, M. Adjouadi, M. Cabrerizo, A. Barreto, J. 

Andrian, R. Duara, and D. Loewenstein, A Neuroimaging 

Feature Extraction Model for Imaging Genetics with 

Application to Alzheimer’s Disease, Proc. 17th IEEE 

BIBE (2017) 15–20.  

33. University of South California, Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database, Available: 

http://adni.loni.usc.edu/methods/mri-analysis/adni-

standardized-data/.  Accessed 13 Jun 2016.  

34. M. Reuter, N. J. Schmansky, H. D. Rosas, and B. Fischl, 

Within-Subject Template Estimation for Unbiased 

Longitudinal Image Analysis, Neuroimage. 61(4) (2012) 

1402–1418. 

35. B. B. Avants, N. Tustison, and G. Song, Advanced 

Normalization Tools (ANTS), Available:  

ftp://ftp.ie.freshrpms.net/pub/sourceforge/a/project/ad/ad

vants/ANTS/ANTS_1_9_x/ants.pdf. Accessed 24 Jan 

2017.  

36. A. Klein, S. S. Ghosh, F. S. Bao, J. Giard, Y. Häme, E. 

Stavsky, N. Lee, B. Rossa, M. Reuter, E. C. Neto, and A. 

Keshavan, Mindboggling morphometry of human brains, 

PLOS Computational Biology 13(2) (2017) e1005350.  

37. Sage Bionetworks, Alzheimer’s Disease Big Data 

DREAM Challenge #1, Available:  

https://www.synapse.org/#!Synapse:syn2290704/wiki/64

710. Accessed 24 Jan 2017. 

38. Mindboggle-101, Mindboggle Data, Available:  

http://www.mindboggle.info/data.html. Accessed 24 Jan 

2017.  

39. S. S. Shapiro, and M. B. Wilk, An analysis of variance 

test for normality (complete sample). Biometrika. 52(3–

4) (1965) 591–611.  

40. H. Braak, and K. D. Tredici, Alzheimer’s disease: 

pathogenesis and prevention, Alzheimers Dement. 8(3) 

(2012) 227–233.  

41. T. Gómez-Isla, J. L. Price, D. W. McKeel, J. C. Morris, J. 

H. Growdon, and B. T. Hyman, Profound loss of layer II 

entorhinal cortex neurons occurs in very mild 

Alzheimer's disease, J. Neurosci. 16(14) (1996) 4491–

4500.  

42. U. A. Khan, L. Liu, F. A. Provenzano, D. E. Berman, C. 

P. Profaci, R. Sloan, R. Mayeux, K. E. Duff, S. A. Small, 

Molecular drivers and cortical spread of lateral entorhinal 

cortex dysfunction in preclinical Alzheimer’s disease, 

Nat. Neurosci. 17(2) (2014) 304–311.  

43. L. R. Squire, and S. Zola-Morgan, The medial temporal 

lobe memory system, Science 253(5026) (1991) 1380–

1386.  

44. L. Wang, Y. Zang, Y. He, M. Liang, X Zhang, L. Tian, 

T. Wu, T. Jian, and K. Li, Changes in hippocampal 

connectivity in the early stages of Alzheimer's disease: 

Evidence from resting state fMRI, Neuroimage 31(2) 

(2006) 496–504.  

45. M. Xia, J. Wang, and Y. He, BrainNet Viewer: A 

Network Visualization Tool for Human Brain 

Connectomics, PLoS ONE 8(7) (2013) e68910.  

46. A. Ortiz, J. Munilla, J. M. Górriz, and J. Ramírez, 

Ensembles of deep learning architectures for the early 

diagnosis of the Alzheimer’s disease, Int. J. Neural Syst. 

26(7) (2016) 1650025.  

47. D. A. Loewenstein, R. E. Curiel, S. Dekosky, M. 

Rosselli, R. Bauer, M. Grieg-Custo, A. Penate, C. Li, G. 

Lizagarra, T. Golde, M. Adjouadi, and R. Duara, 

Recovery from Proactive Semantic Interference and MRI 

Volume: A Replication and Extension Study, J. 

Alzheimers Disease 59(1) (2017) 131–139.  

View publication statsView publication stats

https://www.researchgate.net/publication/324483961

